Telegram Group & Telegram Channel
This media is not supported in your browser
VIEW IN TELEGRAM
๐Š-๐Œ๐ž๐š๐ง๐ฌ ๐‚๐ฅ๐ฎ๐ฌ๐ญ๐ž๐ซ๐ข๐ง๐  ๐„๐ฑ๐ฉ๐ฅ๐š๐ข๐ง๐ž๐ - ๐Ÿ๐จ๐ซ ๐›๐ž๐ ๐ข๐ง๐ง๐ž๐ซ๐ฌ

๐–๐ก๐š๐ญ ๐ข๐ฌ ๐Š-๐Œ๐ž๐š๐ง๐ฌ?
Itโ€™s an unsupervised machine learning algorithm that automatically groups your data into K similar clusters without labels. It finds hidden patterns using distance-based similarity.

๐ˆ๐ง๐ญ๐ฎ๐ข๐ญ๐ข๐ฏ๐ž ๐ž๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž:
You run a mall. Your data has:
โ€บ Age
โ€บ Annual Income
โ€บ Spending Score

K-Means can divide customers into:
โคท Budget Shoppers
โคท Mid-Range Customers
โคท High-End Spenders

๐‡๐จ๐ฐ ๐ข๐ญ ๐ฐ๐จ๐ซ๐ค๐ฌ:
โ‘  Choose the number of clusters K
โ‘ก Randomly initialize K centroids
โ‘ข Assign each point to its nearest centroid
โ‘ฃ Move centroids to the mean of their assigned points
โ‘ค Repeat until centroids donโ€™t move (convergence)

๐Ž๐›๐ฃ๐ž๐œ๐ญ๐ข๐ฏ๐ž:
Minimize the total squared distance between data points and their cluster centroids
๐‰ = ฮฃโ€–๐ฑแตข - ฮผโฑผโ€–ยฒ
Where ๐ฑแตข = data point, ฮผโฑผ = cluster center

๐‡๐จ๐ฐ ๐ญ๐จ ๐ฉ๐ข๐œ๐ค ๐Š:
Use the Elbow Method
โคท Plot K vs. total within-cluster variance
โคท The โ€œelbowโ€ in the curve = ideal number of clusters

๐‚๐จ๐๐ž ๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž (๐’๐œ๐ข๐ค๐ข๐ญ-๐‹๐ž๐š๐ซ๐ง):

from sklearn.cluster import KMeans
X = [[1, 2], [1, 4], [1, 0], [10, 2], [10, 4], [10, 0]]
model = KMeans(n_clusters=2, random_state=0)
model.fit(X)
print(model.labels_)
print(model.cluster_centers_)


๐๐ž๐ฌ๐ญ ๐”๐ฌ๐ž ๐‚๐š๐ฌ๐ž๐ฌ:
โคท Customer segmentation
โคท Image compression
โคท Market analysis
โคท Social network analysis

๐‹๐ข๐ฆ๐ข๐ญ๐š๐ญ๐ข๐จ๐ง๐ฌ:
โ€บ Sensitive to outliers
โ€บ Requires you to predefine K
โ€บ Works best with spherical clusters

https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A ๐Ÿ“ฑ
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/CodeProgrammer/3768
Create:
Last Update:

๐Š-๐Œ๐ž๐š๐ง๐ฌ ๐‚๐ฅ๐ฎ๐ฌ๐ญ๐ž๐ซ๐ข๐ง๐  ๐„๐ฑ๐ฉ๐ฅ๐š๐ข๐ง๐ž๐ - ๐Ÿ๐จ๐ซ ๐›๐ž๐ ๐ข๐ง๐ง๐ž๐ซ๐ฌ

๐–๐ก๐š๐ญ ๐ข๐ฌ ๐Š-๐Œ๐ž๐š๐ง๐ฌ?
Itโ€™s an unsupervised machine learning algorithm that automatically groups your data into K similar clusters without labels. It finds hidden patterns using distance-based similarity.

๐ˆ๐ง๐ญ๐ฎ๐ข๐ญ๐ข๐ฏ๐ž ๐ž๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž:
You run a mall. Your data has:
โ€บ Age
โ€บ Annual Income
โ€บ Spending Score

K-Means can divide customers into:
โคท Budget Shoppers
โคท Mid-Range Customers
โคท High-End Spenders

๐‡๐จ๐ฐ ๐ข๐ญ ๐ฐ๐จ๐ซ๐ค๐ฌ:
โ‘  Choose the number of clusters K
โ‘ก Randomly initialize K centroids
โ‘ข Assign each point to its nearest centroid
โ‘ฃ Move centroids to the mean of their assigned points
โ‘ค Repeat until centroids donโ€™t move (convergence)

๐Ž๐›๐ฃ๐ž๐œ๐ญ๐ข๐ฏ๐ž:
Minimize the total squared distance between data points and their cluster centroids
๐‰ = ฮฃโ€–๐ฑแตข - ฮผโฑผโ€–ยฒ
Where ๐ฑแตข = data point, ฮผโฑผ = cluster center

๐‡๐จ๐ฐ ๐ญ๐จ ๐ฉ๐ข๐œ๐ค ๐Š:
Use the Elbow Method
โคท Plot K vs. total within-cluster variance
โคท The โ€œelbowโ€ in the curve = ideal number of clusters

๐‚๐จ๐๐ž ๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž (๐’๐œ๐ข๐ค๐ข๐ญ-๐‹๐ž๐š๐ซ๐ง):

from sklearn.cluster import KMeans
X = [[1, 2], [1, 4], [1, 0], [10, 2], [10, 4], [10, 0]]
model = KMeans(n_clusters=2, random_state=0)
model.fit(X)
print(model.labels_)
print(model.cluster_centers_)


๐๐ž๐ฌ๐ญ ๐”๐ฌ๐ž ๐‚๐š๐ฌ๐ž๐ฌ:
โคท Customer segmentation
โคท Image compression
โคท Market analysis
โคท Social network analysis

๐‹๐ข๐ฆ๐ข๐ญ๐š๐ญ๐ข๐จ๐ง๐ฌ:
โ€บ Sensitive to outliers
โ€บ Requires you to predefine K
โ€บ Works best with spherical clusters

https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A ๐Ÿ“ฑ

BY Python | Machine Learning | Coding | R


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/CodeProgrammer/3768

View MORE
Open in Telegram


Python | Machine Learning | Coding | R Telegram | DID YOU KNOW?

Date: |

That strategy is the acquisition of a value-priced company by a growth company. Using the growth company's higher-priced stock for the acquisition can produce outsized revenue and earnings growth. Even better is the use of cash, particularly in a growth period when financial aggressiveness is accepted and even positively viewed.he key public rationale behind this strategy is synergy - the 1+1=3 view. In many cases, synergy does occur and is valuable. However, in other cases, particularly as the strategy gains popularity, it doesn't. Joining two different organizations, workforces and cultures is a challenge. Simply putting two separate organizations together necessarily creates disruptions and conflicts that can undermine both operations.

Python | Machine Learning | Coding | R from ca


Telegram Python | Machine Learning | Coding | R
FROM USA